A system of miniaturized stirred bioreactors for parallel continuous cultivation of yeast with online measurement of dissolved oxygen and off-gas.
نویسندگان
چکیده
Chemostat cultivation is a powerful tool for physiological studies of microorganisms. We report the construction and application of a set of eight parallel small-scale bioreactors with a working volume of 10 mL for continuous cultivation. Hungate tubes were used as culture vessels connected to multichannel-peristaltic pumps for feeding fresh media and removal of culture broth and off-gas. Water saturated air is sucked into the bioreactors by applying negative pressure, and small stirrer bars inside the culture vessels allow sufficient mixing and oxygen transfer. Optical sensors are used for non-invasive online measurement of dissolved oxygen, which proved to be a powerful indicator of the physiological state of the cultures, particularly of steady-state conditions. Analysis of culture exhaust-gas by means of mass spectrometry enables balancing of carbon. The capacity of the developed small-scale bioreactor system was validated using the fission yeast Schizosaccharomyces pombe, focusing on the metabolic shift from respiratory to respiro-fermentative metabolism, as well as studies on consumption of different substrates such as glucose, fructose, and gluconate. In all cases, an almost completely closed carbon balance was obtained proving the reliability of the experimental setup.
منابع مشابه
Modeling of Oxygen Supply Profiles in Stirred-Tank Aggregated Stem Cells Cultivation Process
This paper investigates a possible practical solution for reasonable oxygen supply during the pluripotent stem cells expansion processes, where the stem cells propagate as aggregates in stirred-suspension bioreactors. Low glucose and low oxygen concentrations are preferred for efficient proliferation of pluripotent stem cells. However, strong oxygen limitation, especially inside of cell aggrega...
متن کاملBioreactor scale-up and oxygen transfer rate in microbial processes: an overview.
In aerobic bioprocesses, oxygen is a key substrate; due to its low solubility in broths (aqueous solutions), a continuous supply is needed. The oxygen transfer rate (OTR) must be known, and if possible predicted to achieve an optimum design operation and scale-up of bioreactors. Many studies have been conducted to enhance the efficiency of oxygen transfer. The dissolved oxygen concentration in ...
متن کاملOn-Line Measurement of Dissolved Methane Concentration During Methane Fermentation in a Loop Bioreactor
A dissolved methane sensor based on silicone tube was designed, constructed and optimized.The silicone tube diameter, silicone tube length and helium flow rate (as the carrier gas(were considered as process parameters to be optimized.A continuous stream of helium (50 mL/min) was directed through the tubing, sweeping out the...
متن کاملNew milliliter-scale stirred tank bioreactors for the cultivation of mycelium forming microorganisms.
A novel milliliter-scale stirred tank bioreactor was developed for the cultivation of mycelium forming microorganisms on a 10 milliliter-scale. A newly designed one-sided paddle impeller is driven magnetically and rotates freely on an axis in an unbaffled reaction vessel made of polystyrene. A rotating lamella is formed which spreads out along the reactor wall. Thus an enhanced surface-to-volum...
متن کاملCfd Simulation of Gluconic Acid Production in a Stirred Gas-liquid Fermenter
Designing large-scale stirred bioreactors with performance closely matching the one achieved in lab-scale fermenters presents continuous challenge. In this contribution, dynamic modelling of the aerobic biocatalytic conversion process in viscous batch stirred tank reactor is developed. Its operation is illustrated by simulation of the interaction of fluid flow, mass transfer and reaction releva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology and bioengineering
دوره 110 2 شماره
صفحات -
تاریخ انتشار 2013